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Abstract – This paper presents the results of the
numerical analysis of a resonant cavity containing
a tubular dielectric resonator and a dielectric

tuning rod. For the given set of dimensions, the
analysis indicates that the resonant mode TMOl can

be tuned over 14 % of the frequency range.

Higher-order modes, which could interfere with the

desired TMOl mode, are also evaluated.

The cavity cross section is subdivided into an
equidistant grid of elements, with the electric
field vectors defined on each grid side. The
matrix equation is formulated with the help of the
zero-divergence condition, which provides an
insurance against the appearance of the parasitic

modes. In an E–field formulation, the matrix

equation looks as follows [5]:

INTRODUCTION

Dielectric-resonator oscillators (DROS)

have become popular building blocks of {[2:-1 f:-i-~[2’:’’-i:i:i11[ l:${${ ‘0 ‘1)

microwave systems. The mechanical
tuning of a typical DRO operating
in TEOl mode is limited to a few percent of the

carrier frequency [1, P.164]. Theoretical studies

show that the TEo1 resonator can be tuned with a

metal screw for more than ten percent [2], but the

associated degradation of the Q factor is too

severe for practical applications.

It has been found experimentally that a

considerably larger useful tuning range, of about

ten percent [3], can be obtained by using the TMo1

mode. This paper presents the results of the
numerical analysis of such a resonant cavity

containing a tubular TMo1 dielectric resonator and
a dielectric tuning rod. The procedure provides

the resonant frequencies of the desired and

undesired modes as functions of the penetration of

the tuning rod, and the associated Q factors. The

computer-generated field plots provide an

additional understanding of the tuning details.

NUMERICAL SOLUTION PROCEDURE

The numerical solution utilizes the Finite
Integration Technique [4,5], specialized to the
rotational cavities filled with inhomogeneous
dielectrics. A definite advantage of the computer
code based on this procedure is the fact that
several of the lowest resonant modes of the same

azimuthal mode number are determined in a single
matrix eigenvalue operation, and that an arbitrary
distribution of dielectric regions within the

cavity can be specified by a simple change of the

input data.

Matrices A are sparse, and matrices D are diago-

nal. Vectors Ier> and Iez> contain the radial and

axial components of the electric field. The above
equation is a standard eigenvalue problem, for
which eigenvalues tin are the natural resonant
frequencies of the cavity. Equation (1)
constitutes the electric field formulation of the

problem. An analogous magnetic field formulation
has also been carried out. For m=O modes, the
matrix eigenvalue problem is formulated without

the use of the divergence equations, and the
resulting matrix is approximately half smaller.

The solutions for the hybrid modes are denoted
here as HEPlmn, in accordance with the IRE 1953
standard [6] . This standard has obviously gone
unnoticed by a number of authors, who have since

introduced various combinations of letters E and

H, in a multitude of permutations, to denote the

hybrid modes. Only two integer subscripts, m and
n, are used here. The first subscript, m, as it
is generally agreed, denotes the azimuthal
variation. The second subscript, n, identifies
the modes counted in the growing order of their

resonant frequencies. While such a notation is
simpler than most of the proposed ones, it must be
understood that the same two subscripts in a
shallow and wide cylindrical cavity may result in
a distinctly different field pattern than in a
long and narrow cavity. However, once the cavity
is fully
provides

individual

specified, the notation used here
an unambiguous identification of
modes.
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The accuracy of the solution decreases as the

modal index n increases. Suppose the meridian

plane is discretized into 10 lines and 10 columns,
which give, approximately, 100 nodal values for

the radial component of the field, and 100 nodal

values for the axial component. An eigenvalue

solver applied to equation (1) will provide about

200 eigenvalues and eigenvectors. Obviously, only

the lowest few eigenvalues can be interpreted as

acceptable modal resonant frequencies, while the

remaining high eigenvalues are superfluous, and

should be ignored.

The field patterns were obtained with the use of

an interactive progrsm for plotting the vector

fields with a personal computer [7]. The program

had to be modified because, due to the nodal

discretization used in the formulation, the

horizontal components of the field are located at

physically different points than the vertical

components.

MODE TUNING CHART

The cavity used for numerical study is shown in

Fig. 1. The tubular dielectric resonator has
outer radius 5.06 mm and length 4.60 mm. The

relative dielectric constant of the resonator is

Er = 37.7. The tuning rod, made of the same

dielectric material, has a radius 0.92 mm and its

length is varied from zero to 9.66 mm. A spacer

made of the material with Cr = 2.55 serves to hold

the dielectric resonator in its place.
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(a) 2.3mm (b) 5.06mm

(C) 6.9 mm (d) 9.66 mm

Fig. 2 Electric field lines of the TMOl mode

for several rod penetrations

an overly smooth transition between the dielectric

and the interface. It has to be kept in mind that
the field plot is obtained by interpolating the
field values between the discrete points.
Therefore, a sudden change in the field direction
becomes apparent only over a distance larger than

one grid cell in any direction.

Fig. 1 Cross section of the cavity with the
It is apparent from Fig.

tuning rod 2 that the electric field
at the center of the cavity is relatively strong,

Figure 2 shows the electric field lines of the
and oriented mainly in the axial direction. For

TMOl mode for various positions of the tuning rod.
that reason, the mechanical tuning with the

The solution has been obtained by using 17x34 grid
centrally located tuning rod is quite effective.

elements. Because of the limited number of It is seen in Fig. 3 that the tuning range of the
TMOl mode is about 14 % of the carrier frequency.

elements, the electric field lines appear to have
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Figure 3 is a tuning chart of all the modes which

have the resonant frequency lower than 10 GHz. It

can be seen that only the modes TMOl and TM02 have

their resonant frequency affected by the position

of the tuning rod, whereas the other modes are

influenced by less than one percent. It is also
seen that three of the modes (TE02, HEM13, and
HEM22) have their resonant frequencies clustered

closely around 8.7 GHz. Finally, the chart also
shows that the mode HEM12 interferes with the

tuning range of the TMO1 mode.
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Fig. 3 Tuning chart

There are several possible solutions of this
interference problem. First, the coupling
mechanism of’ the cavity to the external circuit
should be made such as to be invisible to the
HEM12 mode. The field pattern of the undesired
mode, shown in Fig. 4, could be helpful in
selecting an appropriate coupling

Fig. 4 Electric (solid) and magnetic
field lines of the HEM12 mode

mechanism.

(dashed)

Second, the resonant frequency of the HEM12 mode

can be shifted by a proper mode trap (e.g. a metal

ring, like in [1, p. 302]). The third, and the

most appropriate, solution would be to optimize

the resonator dimensions so that the tuning range

of the TMOl mode becomes clear of any interference
with other modes. For the tubular dielectric

resonator operating in the TEOl mode, an

OptimizatiOn Of resonator dimensions has been

described in [8]. The computer code used here
would be well suited for a similar optimization
study, which would also take into account the size

and the shape of the tuning rod.

Q FACTOR

When the numerical solution of the matrix

eigenvalue problem is obtained, the ei.genvectors

of each resonant mode contain the values of the

electric (or magnetic) fields at each r~ode of the

cavity cross section. The values of the magnetic

field tangential to the metal surface are then

used to find the conductor losses of the cavity.

Similarly, the values of the electric field over

the dielectric regions are used to compute the
dielectric losses. The unloaded Q factor of the

cavity is then obtained by adding these two loss

mechanisms.

The computed Q factors of the TMOl and TM02 modes

are shown in Fig. 5. It was assume_d that the

cavity is made of brass (o = 1.45 10-/ S/m), and

that the loss tangent of the dielectric resonator

material is a function of frequency as follows:

tan 6 = 0.45 . 10-4 + 0.166 . 10-4 l?GHZ (2)

For the largest penetration of the tuning rod, the

Q factor of the TMOl mode drops to about 83 % of
its maximum value, which is a very modest

degradation.
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Fig. 5(a) Q factor of TMOl mode
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Fig. 5(b) Q factor of the TM02 mode

SUMNARY AND CONCLUSIONS

In summary, the tubular dielectric resonator
operating in TMOl mode appears to have a good
potential for mechanical tuning, and the tuning
range appears co be possible beyond ten percent of

the carrier frequency. The numerical procedure
based on the Finite Integration Technique is well

suited for studying the tuning properties of the

cavity. By using this procedure, it should be

further possible to optimize the dimensions of the

resonator and its surroundings, so that a maximum

tuning range, free of the interference with other
modes, will be achieved. Study of the temperature
stability is also possible with the same
procedure, because the procedure provides accurate
information on the resonant frequency as a result

of any change in cavity dimensions.
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