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Abstract - This paper presents the results of the
numerical analysis of a resonant cavity containing
a tubular dielectric resonator and a dielectric
tuning rod. For the given set of dimensions, the
analysis indicates that the resonant mode TMpj can
be tuned over 14 % of the frequency range.
Higher—order modes, which could interfere with the
desired TMp1 mode, are also evaluated.

INTRODUCTION

Dielectric-resonator oscillators (DROs) 1
have become popular building blocks of
microwave systems. The mechanical
tuning of a typical DRO operating
in TEp] mode is limited to a few percent of the
carrier frequency [l, p.1l64]. Theoretical studies
show that the TEp) resonator can be tuned with a
metal screw for more than ten percent [2], but the

associated degradation of the Q factor is too
severe for practical applications.
It has been found experimentally that a

considerably larger useful tuning range, of about
ten percent [3], can be obtained by using the TMpq
mode. This paper presents the results of the
numerical analysis of such a resonant cavity
containing a tubular TMgp1 dielectric resonator and
a dielectric tuning rod. The procedure provides
the resonant frequencies of the desired and
undesired modes as functions of the penetration of
the tuning rod, and the associated Q factors. The
computer-generated field plots provide an
additional understanding of the tuning details.

NUMERICAL SOLUTION PROCEDURE

solution utilizes the Finite
Integration Technique [4,5], specialized to the
rotational cavities filled with inhomogeneous
dielectrics. A definite advantage of the computer
code based on this procedure is the fact that
several of the lowest resonant modes of the same
azimuthal mode numbexr are determined in a single
matrix eigenvalue operation, and that an arbitrary
distribution of dielectric regions within the
cavity can be specified by a simple change of the
input data.

The numerical
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section is subdivided into an
equidistant grid of elements, with the electric
field vectors defined on each grid side. The
matrix equation is formulated with the help of the
zero~divergence condition, which provides an
insurance against the appearance of the parasitic
modes. In an E-field formulation, the matrix
equation looks as follows [5]:

The cavity cross
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Matrices A are sparse, and matrices D are diago-

nal. Vectors |e,> and |e,> contain the radial and
axial components of the electric field. The above
equation 1is a standard eigenvalue problem, for
which eigenvalues w, are the natural resonant
frequencies of the cavity. Equation (1)
constitutes the electric field formulation of the
problem. An analogous magnetic field formulation
has also been carried out. For m=0 modes, the
matrix eigenvalue problem is formulated without
the use of the divergence equations, and the
resulting matrix is approximately half smaller.

The solutions for the hybrid modes are denoted
here as HEMpp,, in accordance with the IRE 1953
standard [6]. This standard has obviocusly gone
unnoticed by a number of authors, who have since
introduced various combinations of letters E and
H, in a multitude of permutations, to denote the
hybrid modes. Only two integer subscripts, m and

n, are used here. The first subscript, m, as it
is generally agreed, denotes the azimuthal
variation, The second subscript, n, identifies

the modes counted in the growing order of their
resonant frequencies. While such a notation is
simpler than most of the proposed ones, it must be
understood that the same two subscripts in a
shallow and wide cylindrical cavity may result in
a distinctly different field pattern than in a
long and narrow cavity. However, once the cavity
is fully specified, the notation used here
provides an unambiguous identification of
individual modes.
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The accuracy of the solution decreases as the
modal index n increases. Suppose the meridian
plane is discretized into 10 lines and 10 columns,
which give, approximately, 100 nodal wvalues for
the radial component of the field, and 100 nodal
values for the axial component. An eigenvalue
solver applied to equation (1) will provide about
200 eigenvalues and eigenvectors. Obviously, only
the lowest few eigenvalues can be interpreted as
acceptable modal resonant frequencies, while the
remaining high eigenvalues are superfluous, and
should be ignored.

The field patterns were obtained with the use of
an interactive program for plotting the vector
fields with a personal computer [7]. The program
had to be modified because, due to the nodal
discretization wused in the formulation, the
horizontal components of the field are located at
physically different points than the vertical
components.

MODE TUNING CHART

The cavity used for numerical study is shown in
Fig. 1. The tubular dielectric resonator has
outer radius 5.06 mm and length 4.60 mm. The
relative dielectric constant of the resonator is
€y 37.7. The tuning rod, made of the same
dielectric material, has a radius 0.92 mm and its
length is varied from zero to 9.66 mm. A spacer
made of the material with e, = 2.55 serves to hold
the dielectric resonator in its place.
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Fig. 1 Cross section of the cavity with the
tuning rod

Figure 2 shows the electric field lines of the
TMg1 mode for various positions of the tuning rod.
The solution has been obtained by using 17x34 grid
elements. Because of the 1limited number of
elements, the electric field lines appear to have
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Fig. 2 Electric field lines of the TMy] mode
for several rod penetrations

an overly smooth transition between the dielectric
and the interface. It has to be kept in mind that
the field plot is obtained by interpolating the
field wvalues between the discrete points.
Therefore, a sudden change in the field direction
becomes apparent only over a distance larger than
one grid cell in any direction.

It is apparent from Fig. 2 that the electric field
at the center of the cavity is relatively strong,
and oriented mainly in the axial direction. For
that reason, the mechanical tuning with the
centrally located tuning rod is quite effective.
It is seen in Fig. 3 that the tuning range of the
TMp1 mode is about 14 % of the carrier frequency.



Figure 3 is a tuning chart of all the modes which
have the resonant frequency lower than 10 GHz. It
can be seen that only the modes TMpj and TMpy have
their resonant frequency affected by the position
of the tuning rod, whereas the other modes are
influenced by less than one percent. It is also
seen that three of the modes (TEgpy, HEMj3, and
HEM5») have their resonant frequencies clustered
closely around 8.7 GHz. Finally, the chart also
shows that the mode HEMjp interferes with the
tuning range of the TMp] mode.
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Fig. 3 Tuning chart
There are several possible solutions of this
interference problem. First, the coupling

mechanism of the cavity to the external circuit
should be made such as to be invisible to the

HEM19 mode. The field pattern of the undesired
mode, shown in Fig. 4, could be helpful in
selecting an appropriate coupling mechanism.

Fig. 4 Electric (solid) and magnetic (dashed)
field lines of the HEMj9 mode

1237

Second, the resonant frequency of the HEMj) mode
can be shifted by a proper mode trap (e.g. a metal
ring, like in [1, p. 302]). The third, and the
most appropriate, solution would be to optimize
the resonator dimensions so that the tuning range
of the TMpj mode becomes clear of any interference
with other modes. For the tubular dielectric
resonator operating in the TEp] mode, an
optimization of resonator dimensions has been
described in [8]. The computer code used here
would be well suited for a similar optimization
study, which would also take into account the size
and the shape of the tuning rod.

Q FACTOR

solution of the matrix
obtained, the eigenvectors
contain the values of the
fields at each node of the
cavity cross section. The values of the magnetic
field tangential to the metal surface are then
used to find the conductor losses of the cavity.
Similarly, the values of the electric field over
the dielectric regions are used to compute the
dielectric losses. The unloaded Q factor of the
cavity is then obtained by adding these two loss
mechanisms.

When the numerical

eigenvalue problem is
of each resonant mode
electric (or magnetic)

The computed Q factors of the TMp] and TMgo modes
are shown in Fig. 5. It was assumed that the
cavity is made of brass (¢ 1.45 1077 S/m), and
that the loss tangent of the dielectric resonator
material is a function of frequency as follows:

tan § = 0.45 - 1074 + 0.166 - 10~% fgy, (2)
For the largest penetration of the tuning rod, the
Q factor of the TMp] mode drops to about 83 % of
its maximum value, which is a very modest

degradation.
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Fig. 5(a) Q factor of TMpj mode



5000

r o
o 0 =
[
[S I
<
'
o o
ol
w m
a <
[=
=
"I =]
o mL
F wn
(=S
o
8 1 " 1 "
<0 2 4 6 8 10
TUNING ROD DEPTH (mm)
Fig. 5(b) Q factor of the TMyy mode
SUMMARY AND CONCLUSIONS
In summary, the tubular dielectric resonator

operating in TMy]; mode appears to have a good
potential for mechanical tuning, and the tuning
range appears to be possible beyond ten percent of
the carrier frequency. The numerical procedure
based on the Finite Integration Technique is well
suited for studying the tuning properties of the
cavity. By using this procedure, it should be
further possible to optimize the dimensions of the
resonator and its surroundings, so that a maximum
tuning range, free of the interference with other
modes, will be achieved. Study of the temperature
stability is also possible with the same
procedure, because the procedure provides accurate
information on the resonant frequency as a result
of any change in cavity dimensions.

ACKNOWLEDGEMENTS
The work was partially supported by the National

Science Foundation under grants EGCS-8443558 and
ECS-8801232.

1238

(1]

(3]

[4]

[8]

REFERENCES

D. Kajfez and P. Guillon (eds.), Dielectric

Resonators. Dedham, Ma: Artech House, 1986.

F. H. Gil and J. P. Martinez, "Analysis of
dielectric resonators with tuning screw and
supporting structure," IEEE Trans. Microwave
Theory Tech., vol MTT-33, pp. 1453-1457,

December 1985.

D. Kajfez and E.J. Hwan, "Tunable dielectric-
resonator oscillator using TMp1s mode,” SBMO

International Microwave Symposium Proec., pp.
971-975, Rio de Janeiro, Brazil, July 1987.

T. Weiland, "On the computation of resonant
modes in cylindrically symmetric cavities,”
Nuclear Instruments and Methods, wvol. 216,
pp. 329-348, 1983.

J. Lebaric, "Study of inhomogeneously filled
cylindrical resonant cavities by the finite

integration technique,” Ph. D. Dissert., U.
of Mississippi, November 1987, University

Microfilms International, No. 88-04282.

"IRE standards on antennas and waveguides:
definitions of terms, 1953", Proc. IRE, Vol.
41, pp. 1721-1728, Dec. 1953.

D. Kajfez and J. A. Gerald, "Plotting vector
fields with a personal computer”, I1EEE Trans.
Microwave Theory Tech., Vol. MTT-35, pp.
1069-1072, Nov. 1987.

K. Wakino, T. Nishikawa, S. Tamura and Y.

Ishikawa, "Microwave bandpass filters
containing DRs with improved temperature
stability and spurious response,"” 1975 IEEE

MTT-S Symposium Digest, pp. 63-65.



